Delivery of antibacterial nanoparticles into dentinal tubules using high-intensity focused ultrasound.
نویسندگان
چکیده
INTRODUCTION High-intensity focused ultrasound (HIFU) produces collapsing cavitation bubbles. This study aims to investigate the efficacy of collapsing cavitation bubbles to deliver antibacterial nanoparticles into dentinal tubules to improve root canal disinfection. METHODS In stage 1, experiments were performed to characterize the efficacy of collapsing cavitation bubbles to deliver the miniature plaster beads into a tubular channel model. In stage 2, experiments were conducted on root-dentin blocks to test the efficacy of HIFU applied at 27 kHz for 2 minutes to deliver antibacterial nanoparticles into dentinal tubules. After the stage 2 experiment, the samples were sectioned and analyzed using field-emission scanning electron microscopy and energy dispersive X-ray analysis. RESULTS The stage 1 experiment showed that collapsing cavitation bubbles using HIFU delivered plaster beads along the entire length of the tubular channel. It was observed from the stage 2 experiments that the diffusion of fluids alone was not able to deliver antibacterial nanoparticles into dentinal tubules. The collapsing cavitation bubbles treatment using HIFU resulted in significant penetration up to 1,000 microm of antibacterial nanoparticles into the dentinal tubules. The statistical analysis showed a highly significant difference in the depth of penetration of antibacterial nanoparticles between the two groups (<0.005). CONCLUSION The cavitation bubbles produced using HIFU can be used as a potential method to deliver antibacterial nanoparticles into the dentinal tubules to enhance root canal disinfection.
منابع مشابه
Effects of nanosilver and nanozinc incorporated mesoporous calcium-silicate nanoparticles on the mechanical properties of dentin
Mesoporous calcium-silicate nanoparticles (MCSNs) are advanced biomaterials for drug delivery and mineralization induction. They can load silver and exhibit significantly antibacterial effects. However, the effects of MCSNs and silver-loaded MCSNs on dentin are unknown. The silver (Ag) and/or zinc (Zn) incorporated MCSNs (Ag-Zn-MCSNs) were prepared by a template method, and their characterizati...
متن کاملEffects of adsorbed and templated nanosilver in mesoporous calcium-silicate nanoparticles on inhibition of bacteria colonization of dentin
Mesoporous calcium-silicate nanoparticles (MCSNs) are advanced biomaterials for controlled drug delivery and mineralization induction. Nanosilver-incorporated MCSNs (Ag-MCSNs) were prepared in the present study using both the adsorption and template methods. Both versions of Ag-MCSNs showed characteristic morphology of mesoporous materials and exhibited sustained release of ions over time. In a...
متن کاملIn-vitro efficacy of nanoparticulate calcium sodium phosphosilicate in the obstruction of dentinal tubules
Objective(s): The present study aimed to assess the in-vitro efficacy of nanoparticulate calcium sodium phosphosilicate mouthwash in the obstruction of dentinal tubules.Materials and Methods: This in-vitro, study was conducted on 120 sections obtained from extracted human premolars, which were etched with citric acid for two minutes and rinsed with distilled water. Afterwards, the section...
متن کاملDeep tissue penetration of nanoparticles using pulsed-high intensity focused ultrasound
Recently, ultrasound (US)-based drug delivery strategies have received attention to improve enhanced permeation and retention (EPR) effect-based passive targeting efficiency of nanoparticles in vitro and in vivo conditions. Among the US treatment techniques, pulsed-high intensity focused ultrasound (pHIFU) have specialized for improving tissue penetration of various macromolecules and nanoparti...
متن کاملHematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy
This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of endodontics
دوره 35 7 شماره
صفحات -
تاریخ انتشار 2009